

Legionella Pneumophila Real Time PCR Kit User Manual

LT027500DR

For use with ABIPrism[™]7000/7300/7500/7900/Step One Plus, iCycler IQTM4/IQTM5; Smart Cycler II, Bio-Rad CFX 96; Rotor Gene ^{™6}6000; Mx3000P/3005P; MJ-Option2/Chromo4; LightCycler[®]480 Instrument

Life Technologies (India) Pvt. Ltd. 306, Aggarwal Gity Mall, Opposite M2K Pitampura, Delhi – 110034 (INDIA). Ph: +91-11-42208000, 42208111, 42208222, Mobile: +91-9810521400, Fax: +91-11-42208444 w.lifetechindia.com a.com Website: wv

∑₂₅ ∦⁻²⁰ ℃ €

By using real time PCR systems, legionella pneumophila real time PCR kit is used for the detection of legionella pneumophila in samples like nasal and pharyngeal secretions and swabs, sputum, pleural sffusion, bronchial lavage, lung biopsy and etc. This virus can also be detected in many other kinds of samples such as as serum, plasma, water etc., but not very common. 2. Principle of Real-Time PCR

The principle of the real-time detection is based on the fluorogenic 5'nuclease assay. During the PCR reaction, the DNA polymerase cleaves the probe at the 5' end and separates the reporter dye from the quencher dye only when the probe hybridizes to the target DNA. This cleavage results in the fluorescent signal generated by the cleaved reporter dye, which is monitored real-time by the PCR detection system. The PCR cycle at which an increase in the fluorescence signal is detected initially (Ct) is proportional to the amount of the specific PCR product. Monitoring the fluorescence intensities during Real Time allows the detection of the accumulating product without having to re-open the reaction tube after the amplification.

3. Product Description

Legionella pneumophila is a motile, rod-shaped, gram-negative, aerobic, bacterium. It requires complex nutritional requirements such as high cysteline levels and low sodium levels to grow. Legionella pneumophila have always been found in non-marine aquatic environments such as lakes and ponds. The optimum growth temperature range for this bacteria is 20-45 degrees Celsius. The organism has been found to possess the ability to survive in tap water at room temperature for over a year. Legionella bacteria are transmitted to the lungs of human beings through a process called aerosilisation.

Legionella pneumophila real time PCR Kit contains a specific ready-to-use system for the detection of the legionella pneumophila by polymerase chain reaction (PCR) in the real-time PCR system. The master contains reagents and enzymes for the specific amplification of the legionella pneumophila DNA. Fluorescence is emitted and measured by the real time systems' optical unit during the PCR. The detection of amplified legionella pneumophila DNA fragment is performed in fluorimeter channel FAM with the fluorescent quencher BHO1. DNA extraction buffer is available in the kit. In addition, the kit contains a system to identify possible PCR inhibition by measuring the HEX/VIC/JOE fluorescence of the internal control (IC). An external positive control (1×10⁷ copies/ml) allows the determination of the gene load. For further information, please refer to section 9.3 Quantitation 4. Kit Contents

Analysis sensitivity:1×10³ copies/ml; LOQ: 2×10³ ~1×10⁸ copies/ml

Note: Analysis sensitivity depends on the sample volume, elution volume, nucleic acid extraction methods and other factors. If you use the DNA extraction buffer in the kit, the analysis sensitivity is the same as it declares. However, when the sample volume is dozens or even hundreds of times greater than elution volume by some concentrating method, it can be much higher.

5. Storage

- All reagents should be stored at -20°C. Storage at +4°C is not recommended.
- All reagents can be used until the expiration date indicated on the kit label.
- Repeated thawing and freezing (>3x) should be avoided, as this may reduce the sensitivity of the assay
- · Cool all reagents during the working steps Reaction Mix should be stored in the dark

6. Additionally Required Materials and Devices

- Biological cabinet
- Vortex mixer · Cryo-container
- Pipets (0.5µl 1000µl) · Sterile filter tips for micro pipets
 - Sterile microtubes
 - · Biohazard waste container · Tube racks

Real time PCR system
Real time PCR reaction tubes/plates

- · Refrigerator and Freezer
- Desktop microcentrifuge for "eppendorf" type tubes (RCF max. 16,000 x g)

7. Warnings and Precaution

Disposable gloves, powderless

- Carefully read this instruction before starting the procedure. For in vitro diagnostic use only.

- This assay needs to be carried out by skilled personnel.
 Clinical samples should be regarded as potentially infectious materials and should be prepared in a laminar flow hood.
- This assay needs to be run according to Good Laboratory Practice
- Do not use the kit after its expiration date.Avoid repeated thawing and freezing of the reagents, this may reduce the sensitivity of the test.
- Once the reagents have been thawed, vortex and centrifuge briefly the tubes before use.
- Prepare quickly the Reaction mix on ice or in the cooling block.
 Set up two separate working areas: 1) Isolation of the RNA/ DNA and 2) Amplification/
- detection of amplification products. • Pipets, vials and other working materials should not circulate among working units. • Use always sterile pipette tips with filters.
- · Wear separate coats and gloves in each area.
- Avoid aerosols

8. Sample Collection, Storage and transport

- · Collect samples in sterile tubes; • Specimens can be extracted immediately or frozen at -20°C to -80°C.
- · Transportation of clinical specimens must comply with local regulations for the transport of etiologic agents

9. Procedure

9.1 DNA-Extraction

DNA extraction buffer is supplied in the kit, please thaw the buffer thoroughly and spin down briefly in the centrifuge before use. It's better to use commercial kits for nucleic acid extraction. 9.1.1 Sputum sample

1) Trypsin digestive Solution preparation Add 10g trypsin to 200ml sterile purified water and mix thoroughly. Adjust the PH value to 8.0 with 2%NaOH solution. Add 2mL 25mmol/L CaCl₂, mix thoroughly and store at 4°C. Please incubate at 37°C for 10 minutes before use.

2) Estimate the volume of the sputum and add partes aequales of the trypsin digestive solution then vortex vigorously. Set at room temperature for 30 minutes. Transfer 0.5ml mixture to a new tube. Centrifuge the tube at 13000rpm for 5 minutes, carefully remove and discard supernatant from the tube without disturbing the pellet.

3 Add 1.0m formal saline. Resuspend the pellet with overak vigorously. Centrifuge at 13000rpm for 5 minutes. Carefully remove and discard supernatant from the tube without disturbing the pellet. 4) Repeat step 3) 5) Add 50µl DNA extraction buffer, closed the tube then resuspend the pellet with vortex vigorously. Spin down briefly

6) Incubate the tube for 10 minutes at 100°C.
7) Centrifuge the tube at 13000rpm for 10 minutes. The supernatant contains the DNA extracted and can be used for PCR

P1.2 Fluid samples (Pleural effusion , and etc.)
 Take 400µl (3ml for water sample) sample in a tube, centrifuge the tube at 13000rpm for 2min, and remove the supernatant and keep the pellet.

2) Add 100µl DNA extraction buffer to the pellet, close the tube then vortex for 10 seconds. Spin down briefly in a table entrifuge

Centringle. 3) Inclubate the tube for 10 minutes at 100°C. 4) Centrifuge the tube at 13000rpm for 10 minutes. The supernatant contains the DNA extracted and can be used for PCR template.

template. 9.1.3 Tissue and swabs sample 9.1.3 Vissue and swabs sample (lung biopsy or swabs) in 1ml normal saline and vortex vigorously. Centrifuge at 13000rpm for 2 minutes. Carefully remove and discard supernatant from the tube without disturbing the pellet. 2) Add 100µJ DNA extraction buffer to the tube, closed the tube then vortex for 10 seconds. 2) Instruction the tube is 10 minutes at 100°C

(a) roug Direction the tube for 10 minutes at 100°C.
 (b) Centrifuge the tube at 13000rpm for 5 minutes. The supernatant contains the extracted DNA and can be used for the template of the PCR.

- Attention:
- A. During the incubation, make sure the tube is not open. Since the vapor will volatilize into the air and may cause contamination if the sample is positive.
- B. The extraction sample should be used in 3 hours or stored at -20°C for one month.
 C. DNA extraction kits are available from various manufacturers. You may use your own extraction
- systems or the commercial kit based on the yield. For the DNA extraction, please comply with the manufacturer's instructions.

9.2 Internal Control

It is necessary to add internal control (IC) in the reaction mix. Internal Control (IC) allows the user to determine and control the possibility of PCR inhibition. Add the internal control (IC) 1µI/rxn and the result will be shown in the HEX/VIC/JOE.

9.3Quantitation

The kit can be used for **quantitative** or **qualitative** real-time PCR

For performance of quantitative real-time PCR, standard dilutions must be prepared first as follows. Molecular Grade Water is used for dilution.

Dilution is not needed for performance of qualitative real-time PCR detection. Take positive control $(1 \times 10^7 \text{ copies/ml})$ as the starting high standard in the first tube. Respectively pipette 36ul of Molecular Grade Water into next three tubes. Do three dilutions as the following figures:

avoid contamination.

9.4 PCR Protocol

1) The volumes of Reaction Mix and Enzyme Mix per reaction multiply with the number of samples, which includes the number of controls, standards, and sample prepared. Molecular

Grade Water is used as the negative control. For reasons of unprecise pipetting, always add an extra virtual sample. Mix completely then spin down briefly in a centrifuge. Pipet 36µl (22.5µl for Smart Cycler II)Master Mix with micropipets of sterile filter tips to 2)

- each Real time PCR reaction plate/tubes. Separately add 4ul (2.5ul for Smart Cycler II)DNA sample, positive and negative controls to different reaction plate/tubes. Immediately close the plate/tubes to avoid contamination.
- Spin down briefly in order to collect the Master Mix in the bottom of the reaction tubes. 3)

4)	Perform the following protocol in	n the Instrume	ent:		
	37°C for 2min	1cycle		Selection of fluorescence channels	
	94°C for 2min	1cycle		FAM	Target Nucleic Acid
	93°C for 15sec, 60°C for 1min	1000/0100		HEX/VIC/JOE	IC
	(Fluorescence measured at 60°C)	40Cycles			

- 5) A If you use ABI Prism® system, please choose "none" as passive reference and quencher.
- 10. Threshold setting: just above the maximum level of molecular grade water.
- 11.Calibration for quantitative detection: Input each concentration of standard controls at the end of

run, and a standard curve will be automatically formed. **12.Quality control:** Negative control, positive control, internal control and QS curve must be performed correctly, otherwise the sample results is invalid.

per	formed correctly, otherwise the sample rest	into 13 inivanu.	
DNA and 2) Amplification/	Channel	Ct value	
	Control	FAM	HEX/VIC/JOE
ng working units.	Molecular Grade Water	UNDET	25~35
	Positive Control(qualitative assay)	≤35	
Your Molecular &	QS (quantitative detection)	Correlation coefficient of QS curve≤-0.98	
13.	Data Analysis and Interpretation		

QS (quantitative detection)	Correlation coefficient of QS curve≤-0.98
3. Data Analysis and Interpretation	

The following sample results are possible

	Ct value		Decult Apply nic				
	FAM	HEX/VIC/JOE	Result Alidi ysis				
1#	UNDET	25~35	Below the detection limit or negative				
2#	≪38	-	Positive; and the software displays the quantitative value				
3#	38~40	25~35	Re-test; If it is still 38~40, report as 1#				
4#	UNDET	UNDET	PCR Inhibition; No diagnosis can be concluded.				