

Influenza Virus A&B Real Time RT-PCR Kit

LT027900RR Instructions for Use

For use with ABI Prism[®]7000/7300/7500/7900/Step One Plus; iCycler iQ[™]4/iQ[™]5; Smart Cycler II;Bio-Rad CFX 96;Rotor Gene[™]6000; Mx3000P/3005P;MJ-Option2/Chromo4; LightCycler[®]480 Instrument

306, Aggarwal City Mall, Opposite M2K, Pitampura, Delhi-110034 Toll Free No. : 1800-120-2434 | Cell: +91-98105-21400 | Fax: +91-11-4220-8444 Website : www.lifetechindia.com E-mail : customerservice@lifetechindia.com

1. Intended Use

Influenza virus A&B Real Time RT-PCR Kit is used for the detection of Influenza virus A&B virus in nasal and pharyngeal secretions by real time PCR systems.

 \sum_{25} CE $I^{-20 \circ c}$

2. Principle of Real-Time PCR

The principle of the real-time detection is based on the fluorogenic 5'nuclease assay. During the PCR reaction, the DNA polymerase cleaves the probe at the 5' end and separates the reporter dye from the quencher dye only when the probe hybridizes to the target DNA. This cleavage results in the fluorescent signal generated by the cleaved reporter dye, which is monitored real-time by the PCR detection system. The PCR cycle at which an increase in the fluorescence signal is detected initially (Ct) is proportional to the amount of the specific PCR product. Monitoring the fluorescence intensities during Real Time allows the detection of the accumulating product without having to re-open the reaction tube after the amplification.

3. Product Description

Influenza is a viral infection of the lungs characterized by fever, cough, and severe muscle aches. In the elderly and infirm, it is a major cause of disability and death (often as a result of secondary infection of the lungs by bacteria). Major outbreaks of influenza are associated with influenza virus type A or B. Infection with type B influenza is usually milder than type A. Type C virus is associated with minor symptoms.

Influenza virus A&B real time RT-PCR kit contains a specific ready-to-use system for the detection of the Influenza virus A&B virus by Reverse Transcription Polymerase Chain Reaction(RT-PCR) in the real-time PCR system. The master contains a Super Mix for the specific amplification of Influenza virus A&B virus RNA. The reaction is done in one step real time RT-PCR. The first step is a reverse transcription (RT), during which the Influenza virus A&B virus RNA is transcribed into cDNA. Afterwards, a thermostable DNA polymerase is used to amplify the specific gene fragments by means of polymerase chain reaction (PCR). Fluorescence is emitted and measured by the real time systems optical unit during PCR. The detection of amplified influenza virus A fragment is performed in channel FAM and influenza virus B fragment is performed in HEX/VIC/JOE with the fluorescent quencher BHQ1. In addition, the reagent uses human genome (RNase P) as internal control to monitor the process of specimen collection and detection. An external positive control (1×10^7 copies/ml) contained, allows the determination of the gene load. For further information, please refer to section 9.2 Quantitation.

4. Kit Contents

Ref.	Type of reagent	Presentation 25rxns
1	IFVA&IFVB Super Mix	1 vial, 480µl
2	RT-PCR Enzyme Mix	1 vial, 28µl
3	Molecular Grade Water	1 vial, 400µl
4	IFVA&IFVB Positive Control (1×10 ⁷ copies/ml)	1 vial, 30µl

Analysis sensitivity: 500 copies/ml; LOQ: $2 \times 10^3 \sim 1 \times 10^8$ copies/ml

Note: Analysis sensitivity depends on the sample volume, elution volume, nucleic acid extraction methods and other factors .If you use the RNA extraction kits recommended, the analysis sensitivity is the same as it declares. However, when the sample volume is dozens or even hundreds of times greater than elution volume by some concentrating method, it can be much.

5. Storage

- All reagents should be stored at -20 °C. Storage at +4 °C is not recommended.
- All reagents can be used until the expiration date indicated on the kit label.

• Repeated thawing and freezing (> 3x) should be avoided, as this may reduce the sensitivity of the assay.

- Cool all reagents during the working steps.
- Super Mix should be stored in the dark.

6. Additionally Required Materials and Devices

- Biological cabinet
- Real time PCR system
- Desktop microcentrifuge for "eppendorf" type tubes (RCF max. 16,000 x g)
- Vortex mixer
- RNA extraction kit
- Real time PCR reaction tubes/plates
- Cryo-container
- Pipets (0.5 µl 1000 µl)
- Sterile filter tips for micro pipets
- Sterile microtubes
- Disposable gloves, powderless
- Biohazard waste container
- Refrigerator and freezer
- Tube racks

7. AWarnings and Precaution

Carefully read this instruction before starting the procedure.

- For in vitro diagnostic use only.
- This assay needs to be carried out by skilled personnel.
- Clinical samples should be regarded as potentially infectious materials and

should be prepared in a laminar flow hood.

- This assay needs to be run according to Good Laboratory Practice.
- Do not use the kit after its expiration date.
- Avoid repeated thawing and freezing of the reagents, this may reduce the sensitivity of the test.
- Once the reagents have been thawed, vortex and centrifuge briefly the tubes before use.
- Prepare quickly the Reaction mix on ice or in the cooling block.

• Set up two separate working areas: 1) Isolation of the RNA/ DNA and 2) Amplification/ detection of amplification products.

- Pipets, vials and other working materials should not circulate among working units.
- Use always sterile pipette tips with filters.
- Wear separate coats and gloves in each area.
- Do not pipette by mouth. Do not eat, drink, smoke in laboratory.
- Avoid aerosols

8. Sample Collection, Storage and transport

- Collected samples in sterile tubes;
- Specimens can be extracted immediately or frozen at -20 ${}^\circ\!\!{\rm C}$ to -80 ${}^\circ\!\!{\rm C}.$
- Transportation of clinical specimens must comply with local regulations for the transport of etiologic agents

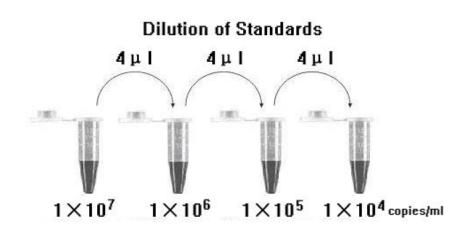
9. Procedure

9.1 RNA-Extraction

Different brand RNA extraction kits are available. You may use your own extraction systems or the commercial kit based on the yield. For the RNA extraction, please comply with the

manufacturer's instructions. The recommended Extraction kit is as follows:

Nucleic Acid Isolation Kit	Cat. Number	Manufacturer	
RNA Isolation Kit	ME-0010/ME-0012	ZJ Biotech	
QIAamp Viral RNA Mini extraction Kit (50)	52904	QIAGEN	


9.2 Quantitation

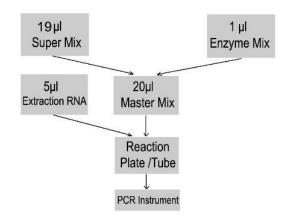
The kit can be used for **quantitative** or **qualitative** real-time RT-PCR. A positive control defined as 1×10^7 copies/ml is supplied in the kit.

For performance of quantitative real-time PCR, Standard dilutions must prepare first as follows. Molecular Grade Water is used for dilution.

Dilution is not needed for qualitative real-time PCR detection.

Take positive control $(1 \times 10^7 \text{copies/ml})$ as the starting high standard in the first tube. Respectively pipette **36ul** Molecular Grade Water into next three tubes. Do three dilutions as the following figures:

To generate a standard curve on the real-time system, all four dilution standards should be used and defined as standard with specification of the corresponding concentrations.


Attention:

A. Mix thoroughly before next transfer.

B. The positive control $(1 \times 10^7 \text{copies/ml})$ contains high concentration of the target DNA. Therefore, be careful during the dilution in order to avoid contamination.

9.3 RT-PCR Protocol

The Master Mix volume for each reaction should be pipetted as follows:

- 1) The volumes of Super Mix and Enzyme Mix per reaction multiply with the number of samples, which includes the number of controls, standards, and sample prepared. Molecular Grade Water is used as the negative control. For reasons of unprecise pipetting, always add an extra virtual sample. Mix completely then spin down briefly in a centrifuge.
- 2) Pipet 20µl Master Mix with micropipets of sterile filter tips to each of the *Real time* PCR reaction plate/tubes. Separately add 5µl RNA sample, positive and negative controls to different reaction plate/tubes. Immediately close the plate/tubes to avoid contamination.
- 3) Spin down briefly in order to collect the Master Mix in the bottom of the reaction tubes.
- 4) Perform the following protocol in the instrument:

Applicable Instruments	Parameter settings	Selection of fluorescence channels	
Other than ABI7500	50° C × 5min; 95 °C × 3min; 95 °C for $3 \sec \rightarrow 60^{\circ}$ C for 20 sec, 45 cycles Fluorescence measured at 60 °C	FAM	IFVA
ABI7500	50° C × 5min; 95 °C × 3min; 95 °C for 5sec → 60 °C for 30sec, 45 cycles	HEX/VIC/JOE Cal Red	IFVB IC
A	Fluorescence measured at 60 $^{\circ}$ C	610/ROX/TEXAS RED	

5) If you use ABI Prism[®] system, please choose "none" as passive reference and quencher.
10. Threshold setting: just above the maximum level of molecular grade water.

11.Calibration for quantitative detection: Input each concentration of standard controls at the end of run, and a standard curve will be automatically formed.

12.Quality control:

Negative control, positive control, internal control and QS curve must be performed correctly, otherwise the sample results is invalid.

Channel		Ct value	
Control	FAM	HEX/VIC/JOE	ROX
Molecular Grade Water	UNDET or 45		
Positive Control(qualitative assay)	≤35		
QS (quantitative detection)	Correlation coefficient of QS curve \leq -0.98		

13. Data Analysis and Interpretation

The following sample results are possible:

	Ct value			Result Analysis
	FAM	HEX	ROX	Kesutt Analysis
1#	≪41	≤41		IFVA and IFVB positive;
				and the software displays the quantitative value
2#	≪41	UNDET or		IFVA positive;
		45		and the software displays the quantitative value
3#	UNDET or	≪41		IFVB positive;
	45			and the software displays the quantitative value
4#	UNDE'	T or 45	≤38	Below the detection limit or negative
5#	41~45		≤38	Re-test; if it is still 41~45, report as 4#
6#	UNDET or 45		>38	Invalid; No diagnosis can be concluded.
				Repeat testing is recommended, including extraction
				of nucleic acids from the specimen.

For Research Use Only.

Life Technologies (India) Pvt Ltd. Life Technologies[®] is a registered trademark of Life Technologies (India) Pvt Ltd. www.lifetechindia.com